3.755 \(\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx\)

Optimal. Leaf size=144 \[ -\frac {2 (-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

-2*(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^(1/2)*ta
n(d*x+c)^(1/2)/d-(1+I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^(1/
2)*tan(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {4241, 3563, 3544, 205, 3599, 63, 217, 203} \[ -\frac {2 (-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Cot[c + d*x]],x]

[Out]

(-2*(-1)^(3/4)*Sqrt[a]*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
 d*x]]*Sqrt[Tan[c + d*x]])/d - ((1 + I)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[
c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3563

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(a*c - b*d)/a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[d/a, Int[(Sqrt[a + b*Tan[e
 + f*x]]*(b + a*Tan[e + f*x]))/Sqrt[c + d*Tan[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx\\ &=-\left (\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\right )+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx}{a}\\ &=\frac {\left (i a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (2 a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {\left (2 i a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {\left (2 i a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {2 (-1)^{3/4} \sqrt {a} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {(1+i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 42.66, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Cot[c + d*x]],x]

[Out]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[Cot[c + d*x]], x]

________________________________________________________________________________________

fricas [B]  time = 0.92, size = 468, normalized size = 3.25 \[ -\frac {1}{4} \, \sqrt {\frac {8 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {8 i \, a}{d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \frac {1}{4} \, \sqrt {\frac {8 i \, a}{d^{2}}} \log \left (-{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {8 i \, a}{d^{2}}} - 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \frac {1}{4} \, \sqrt {\frac {4 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (16 i \, a d e^{\left (3 i \, d x + 3 i \, c\right )} - 16 i \, a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {4 i \, a}{d^{2}}} - 48 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 16 \, a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) - \frac {1}{4} \, \sqrt {\frac {4 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (-16 i \, a d e^{\left (3 i \, d x + 3 i \, c\right )} + 16 i \, a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {4 i \, a}{d^{2}}} - 48 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 16 \, a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(8*I*a/d^2)*log((sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(8*I*a/d^2) + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 1/4
*sqrt(8*I*a/d^2)*log(-(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*
x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(8*I*a/d^2) - 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 1/4*sq
rt(4*I*a/d^2)*log((sqrt(2)*(16*I*a*d*e^(3*I*d*x + 3*I*c) - 16*I*a*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*
c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(4*I*a/d^2) - 48*a^2*e^(2*I*d*x + 2*I
*c) + 16*a^2)*e^(-2*I*d*x - 2*I*c)) - 1/4*sqrt(4*I*a/d^2)*log((sqrt(2)*(-16*I*a*d*e^(3*I*d*x + 3*I*c) + 16*I*a
*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) -
1))*sqrt(4*I*a/d^2) - 48*a^2*e^(2*I*d*x + 2*I*c) + 16*a^2)*e^(-2*I*d*x - 2*I*c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 1.72, size = 582, normalized size = 4.04 \[ -\frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \left (-1+\cos \left (d x +c \right )\right ) \left (i \sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )-i \sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )+2 i \sqrt {2}\, \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right )+\sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )-\sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )-2 \sqrt {2}\, \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right )-2 i \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )-2 i \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )-i \ln \left (-\frac {\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}\right )+2 \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )+2 \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )+\ln \left (-\frac {\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}\right )\right ) \sqrt {2}}{2 d \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x)

[Out]

-1/2/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))*(I*2^(1/2)*ln(((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)-1)-I*2^(1/2)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)+2*I*2^(1/2)*arctan(((-1+cos(d*x+c))/
sin(d*x+c))^(1/2))+2^(1/2)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)-2^(1/2)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1
/2)+1)-2*2^(1/2)*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2))-2*I*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1
/2)+1)-2*I*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)-I*ln(-(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1
/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(
d*x+c)-1))+2*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)+2*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)-1)+ln(-(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(2^(1/2)*((-1+c
os(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)))/sin(d*x+c)/(cos(d*x+c)/sin(d*x+c))^(1/2)/(I
*sin(d*x+c)+cos(d*x+c)-1)/((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(1/2)/cot(c + d*x)^(1/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(1/2)/cot(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)/cot(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))/sqrt(cot(c + d*x)), x)

________________________________________________________________________________________